Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids.

Identifieur interne : 001A02 ( Main/Exploration ); précédent : 001A01; suivant : 001A03

A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids.

Auteurs : Jan Janouskovec [Canada] ; Ales Horák ; Miroslav Oborník ; Julius Lukes ; Patrick J. Keeling

Source :

RBID : pubmed:20534454

Descripteurs français

English descriptors

Abstract

The discovery of a nonphotosynthetic plastid in malaria and other apicomplexan parasites has sparked a contentious debate about its evolutionary origin. Molecular data have led to conflicting conclusions supporting either its green algal origin or red algal origin, perhaps in common with the plastid of related dinoflagellates. This distinction is critical to our understanding of apicomplexan evolution and the evolutionary history of endosymbiosis and photosynthesis; however, the two plastids are nearly impossible to compare due to their nonoverlapping information content. Here we describe the complete plastid genome sequences and plastid-associated data from two independent photosynthetic lineages represented by Chromera velia and an undescribed alga CCMP3155 that we show are closely related to apicomplexans. These plastids contain a suite of features retained in either apicomplexan (four plastid membranes, the ribosomal superoperon, conserved gene order) or dinoflagellate plastids (form II Rubisco acquired by horizontal transfer, transcript polyuridylylation, thylakoids stacked in triplets) and encode a full collective complement of their reduced gene sets. Together with whole plastid genome phylogenies, these characteristics provide multiple lines of evidence that the extant plastids of apicomplexans and dinoflagellates were inherited by linear descent from a common red algal endosymbiont. Our phylogenetic analyses also support their close relationship to plastids of heterokont algae, indicating they all derive from the same endosymbiosis. Altogether, these findings support a relatively simple path of linear descent for the evolution of photosynthesis in a large proportion of algae and emphasize plastid loss in several lineages (e.g., ciliates, Cryptosporidium, and Phytophthora).

DOI: 10.1073/pnas.1003335107
PubMed: 20534454
PubMed Central: PMC2890776


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids.</title>
<author>
<name sortKey="Janouskovec, Jan" sort="Janouskovec, Jan" uniqKey="Janouskovec J" first="Jan" last="Janouskovec">Jan Janouskovec</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Botany, University of British Columbia, Vancouver, BC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Botany, University of British Columbia, Vancouver, BC</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Horak, Ales" sort="Horak, Ales" uniqKey="Horak A" first="Ales" last="Horák">Ales Horák</name>
</author>
<author>
<name sortKey="Obornik, Miroslav" sort="Obornik, Miroslav" uniqKey="Obornik M" first="Miroslav" last="Oborník">Miroslav Oborník</name>
</author>
<author>
<name sortKey="Lukes, Julius" sort="Lukes, Julius" uniqKey="Lukes J" first="Julius" last="Lukes">Julius Lukes</name>
</author>
<author>
<name sortKey="Keeling, Patrick J" sort="Keeling, Patrick J" uniqKey="Keeling P" first="Patrick J" last="Keeling">Patrick J. Keeling</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20534454</idno>
<idno type="pmid">20534454</idno>
<idno type="doi">10.1073/pnas.1003335107</idno>
<idno type="pmc">PMC2890776</idno>
<idno type="wicri:Area/Main/Corpus">001893</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001893</idno>
<idno type="wicri:Area/Main/Curation">001893</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001893</idno>
<idno type="wicri:Area/Main/Exploration">001893</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids.</title>
<author>
<name sortKey="Janouskovec, Jan" sort="Janouskovec, Jan" uniqKey="Janouskovec J" first="Jan" last="Janouskovec">Jan Janouskovec</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Botany, University of British Columbia, Vancouver, BC, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Botany, University of British Columbia, Vancouver, BC</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Horak, Ales" sort="Horak, Ales" uniqKey="Horak A" first="Ales" last="Horák">Ales Horák</name>
</author>
<author>
<name sortKey="Obornik, Miroslav" sort="Obornik, Miroslav" uniqKey="Obornik M" first="Miroslav" last="Oborník">Miroslav Oborník</name>
</author>
<author>
<name sortKey="Lukes, Julius" sort="Lukes, Julius" uniqKey="Lukes J" first="Julius" last="Lukes">Julius Lukes</name>
</author>
<author>
<name sortKey="Keeling, Patrick J" sort="Keeling, Patrick J" uniqKey="Keeling P" first="Patrick J" last="Keeling">Patrick J. Keeling</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Apicomplexa (classification)</term>
<term>Apicomplexa (genetics)</term>
<term>Apicomplexa (ultrastructure)</term>
<term>Base Sequence (MeSH)</term>
<term>Dinoflagellida (classification)</term>
<term>Dinoflagellida (genetics)</term>
<term>Dinoflagellida (ultrastructure)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Transfer, Horizontal (MeSH)</term>
<term>Genome, Plastid (MeSH)</term>
<term>Microscopy, Electron, Transmission (MeSH)</term>
<term>Models, Genetic (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Photosynthesis (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Plastids (genetics)</term>
<term>Plastids (ultrastructure)</term>
<term>Poly U (genetics)</term>
<term>RNA, Messenger (genetics)</term>
<term>Rhodophyta (classification)</term>
<term>Rhodophyta (genetics)</term>
<term>Rhodophyta (ultrastructure)</term>
<term>Ribulose-Bisphosphate Carboxylase (genetics)</term>
<term>Symbiosis (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>Apicomplexa (classification)</term>
<term>Apicomplexa (génétique)</term>
<term>Apicomplexa (ultrastructure)</term>
<term>Dinoflagellida (classification)</term>
<term>Dinoflagellida (génétique)</term>
<term>Dinoflagellida (ultrastructure)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Génome plastidique (MeSH)</term>
<term>Microscopie électronique à transmission (MeSH)</term>
<term>Modèles génétiques (MeSH)</term>
<term>Photosynthèse (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Plastes (génétique)</term>
<term>Plastes (ultrastructure)</term>
<term>Poly U (génétique)</term>
<term>Rhodophyta (classification)</term>
<term>Rhodophyta (génétique)</term>
<term>Rhodophyta (ultrastructure)</term>
<term>Ribulose bisphosphate carboxylase (génétique)</term>
<term>Symbiose (génétique)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Transfert horizontal de gène (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Poly U</term>
<term>RNA, Messenger</term>
<term>Ribulose-Bisphosphate Carboxylase</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Apicomplexa</term>
<term>Dinoflagellida</term>
<term>Rhodophyta</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Apicomplexa</term>
<term>Dinoflagellida</term>
<term>Photosynthesis</term>
<term>Plastids</term>
<term>Rhodophyta</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Apicomplexa</term>
<term>Dinoflagellida</term>
<term>Photosynthèse</term>
<term>Plastes</term>
<term>Poly U</term>
<term>Rhodophyta</term>
<term>Ribulose bisphosphate carboxylase</term>
<term>Symbiose</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Apicomplexa</term>
<term>Dinoflagellida</term>
<term>Plastids</term>
<term>Rhodophyta</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Evolution, Molecular</term>
<term>Gene Transfer, Horizontal</term>
<term>Genome, Plastid</term>
<term>Microscopy, Electron, Transmission</term>
<term>Models, Genetic</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Apicomplexa</term>
<term>Dinoflagellida</term>
<term>Données de séquences moléculaires</term>
<term>Génome plastidique</term>
<term>Microscopie électronique à transmission</term>
<term>Modèles génétiques</term>
<term>Phylogenèse</term>
<term>Plastes</term>
<term>Rhodophyta</term>
<term>Séquence nucléotidique</term>
<term>Transfert horizontal de gène</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The discovery of a nonphotosynthetic plastid in malaria and other apicomplexan parasites has sparked a contentious debate about its evolutionary origin. Molecular data have led to conflicting conclusions supporting either its green algal origin or red algal origin, perhaps in common with the plastid of related dinoflagellates. This distinction is critical to our understanding of apicomplexan evolution and the evolutionary history of endosymbiosis and photosynthesis; however, the two plastids are nearly impossible to compare due to their nonoverlapping information content. Here we describe the complete plastid genome sequences and plastid-associated data from two independent photosynthetic lineages represented by Chromera velia and an undescribed alga CCMP3155 that we show are closely related to apicomplexans. These plastids contain a suite of features retained in either apicomplexan (four plastid membranes, the ribosomal superoperon, conserved gene order) or dinoflagellate plastids (form II Rubisco acquired by horizontal transfer, transcript polyuridylylation, thylakoids stacked in triplets) and encode a full collective complement of their reduced gene sets. Together with whole plastid genome phylogenies, these characteristics provide multiple lines of evidence that the extant plastids of apicomplexans and dinoflagellates were inherited by linear descent from a common red algal endosymbiont. Our phylogenetic analyses also support their close relationship to plastids of heterokont algae, indicating they all derive from the same endosymbiosis. Altogether, these findings support a relatively simple path of linear descent for the evolution of photosynthesis in a large proportion of algae and emphasize plastid loss in several lineages (e.g., ciliates, Cryptosporidium, and Phytophthora).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20534454</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>07</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>107</Volume>
<Issue>24</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jun</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids.</ArticleTitle>
<Pagination>
<MedlinePgn>10949-54</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1003335107</ELocationID>
<Abstract>
<AbstractText>The discovery of a nonphotosynthetic plastid in malaria and other apicomplexan parasites has sparked a contentious debate about its evolutionary origin. Molecular data have led to conflicting conclusions supporting either its green algal origin or red algal origin, perhaps in common with the plastid of related dinoflagellates. This distinction is critical to our understanding of apicomplexan evolution and the evolutionary history of endosymbiosis and photosynthesis; however, the two plastids are nearly impossible to compare due to their nonoverlapping information content. Here we describe the complete plastid genome sequences and plastid-associated data from two independent photosynthetic lineages represented by Chromera velia and an undescribed alga CCMP3155 that we show are closely related to apicomplexans. These plastids contain a suite of features retained in either apicomplexan (four plastid membranes, the ribosomal superoperon, conserved gene order) or dinoflagellate plastids (form II Rubisco acquired by horizontal transfer, transcript polyuridylylation, thylakoids stacked in triplets) and encode a full collective complement of their reduced gene sets. Together with whole plastid genome phylogenies, these characteristics provide multiple lines of evidence that the extant plastids of apicomplexans and dinoflagellates were inherited by linear descent from a common red algal endosymbiont. Our phylogenetic analyses also support their close relationship to plastids of heterokont algae, indicating they all derive from the same endosymbiosis. Altogether, these findings support a relatively simple path of linear descent for the evolution of photosynthesis in a large proportion of algae and emphasize plastid loss in several lineages (e.g., ciliates, Cryptosporidium, and Phytophthora).</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Janouskovec</LastName>
<ForeName>Jan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany, University of British Columbia, Vancouver, BC, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Horák</LastName>
<ForeName>Ales</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Oborník</LastName>
<ForeName>Miroslav</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lukes</LastName>
<ForeName>Julius</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Keeling</LastName>
<ForeName>Patrick J</ForeName>
<Initials>PJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>HM222967</AccessionNumber>
<AccessionNumber>HM222968</AccessionNumber>
<AccessionNumber>HM245036</AccessionNumber>
<AccessionNumber>HM245037</AccessionNumber>
<AccessionNumber>HM245038</AccessionNumber>
<AccessionNumber>HM245039</AccessionNumber>
<AccessionNumber>HM245040</AccessionNumber>
<AccessionNumber>HM245041</AccessionNumber>
<AccessionNumber>HM245042</AccessionNumber>
<AccessionNumber>HM245043</AccessionNumber>
<AccessionNumber>HM245044</AccessionNumber>
<AccessionNumber>HM245045</AccessionNumber>
<AccessionNumber>HM245046</AccessionNumber>
<AccessionNumber>HM245047</AccessionNumber>
<AccessionNumber>HM245048</AccessionNumber>
<AccessionNumber>HM245049</AccessionNumber>
<AccessionNumber>HM245050</AccessionNumber>
<AccessionNumber>HM245051</AccessionNumber>
<AccessionNumber>HM245052</AccessionNumber>
<AccessionNumber>HM245053</AccessionNumber>
<AccessionNumber>HM245054</AccessionNumber>
<AccessionNumber>HM245055</AccessionNumber>
<AccessionNumber>HM245056</AccessionNumber>
<AccessionNumber>HM245057</AccessionNumber>
<AccessionNumber>HM245058</AccessionNumber>
<AccessionNumber>HM245059</AccessionNumber>
<AccessionNumber>HM245060</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>MOP 84265</GrantID>
<Agency>Canadian Institutes of Health Research</Agency>
<Country>Canada</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>06</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>27416-86-0</RegistryNumber>
<NameOfSubstance UI="D011072">Poly U</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 4.1.1.39</RegistryNumber>
<NameOfSubstance UI="D012273">Ribulose-Bisphosphate Carboxylase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016782" MajorTopicYN="N">Apicomplexa</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004141" MajorTopicYN="N">Dinoflagellida</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022761" MajorTopicYN="N">Gene Transfer, Horizontal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054627" MajorTopicYN="N">Genome, Plastid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046529" MajorTopicYN="N">Microscopy, Electron, Transmission</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018087" MajorTopicYN="N">Plastids</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011072" MajorTopicYN="N">Poly U</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000461" MajorTopicYN="N">Rhodophyta</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012273" MajorTopicYN="N">Ribulose-Bisphosphate Carboxylase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>6</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>6</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20534454</ArticleId>
<ArticleId IdType="pii">1003335107</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1003335107</ArticleId>
<ArticleId IdType="pmc">PMC2890776</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 1999 Jul 8;400(6740):155-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10408440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Eukaryot Microbiol. 1999 Jul-Aug;46(4):367-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10461383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Apr 17;19(8):1794-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10775264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2001 Mar;18(3):418-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11230543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Dec 13;298(5601):2155</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12481129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2003 Jul 15;116(Pt 14):2867-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12771189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jul 4;301(5629):49; author reply 49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12843377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2003 Dec 4;321:39-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14636990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2004 Feb 3;14(3):213-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14761653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protist. 2004 Mar;155(1):65-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15144059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jul 16;305(5682):354-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15256663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2004 Oct;59(4):464-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15638458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2006 Apr 26;371(2):206-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 Sep;4(9):e286</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16933976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 1;313(5791):1261-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16946064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Biol. 2006 Sep 06;4:31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16956407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2007 May 15;17(10):887-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17462896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1702-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1832-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17522086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Eukaryot Microbiol. 1999 Jul-Aug;46(4):347-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18092388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Feb 21;451(7181):959-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18288187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2008 Jun;25(6):1167-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18359776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2008 May;23(5):268-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18378040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2008 Jul;25(7):1297-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18385218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2008 Aug 27;363(1504):2629-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18487131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Lett. 2008 Aug 23;4(4):366-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18522922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2008 Jul 8;18(13):956-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18595706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Parasitol. 2009 Jan;39(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18822291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2009 Mar;24(3):119-21; author reply 121-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19200617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jun 26;324(5935):1724-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19556510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Parasitol. 2009 Nov;123(3):236-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19646439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2009 Jul 27;1:231-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20333193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protist. 2011 Jan;162(1):115-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20643580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phycol. 2008 Oct;44(5):1097-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27041706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Biol Sci. 1995 Mar 22;259(1356):271-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7740046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Jun 16;268(5217):1622-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7777861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1996 Jun 6;381(6582):482</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8632819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1996 Aug 16;261(2):155-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8757284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Mar 7;275(5305):1485-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9045615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 1997 Nov;19(11):1033-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9394626</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Colombie-Britannique </li>
</region>
<settlement>
<li>Vancouver</li>
</settlement>
<orgName>
<li>Université de la Colombie-Britannique</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Horak, Ales" sort="Horak, Ales" uniqKey="Horak A" first="Ales" last="Horák">Ales Horák</name>
<name sortKey="Keeling, Patrick J" sort="Keeling, Patrick J" uniqKey="Keeling P" first="Patrick J" last="Keeling">Patrick J. Keeling</name>
<name sortKey="Lukes, Julius" sort="Lukes, Julius" uniqKey="Lukes J" first="Julius" last="Lukes">Julius Lukes</name>
<name sortKey="Obornik, Miroslav" sort="Obornik, Miroslav" uniqKey="Obornik M" first="Miroslav" last="Oborník">Miroslav Oborník</name>
</noCountry>
<country name="Canada">
<region name="Colombie-Britannique ">
<name sortKey="Janouskovec, Jan" sort="Janouskovec, Jan" uniqKey="Janouskovec J" first="Jan" last="Janouskovec">Jan Janouskovec</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A02 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A02 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20534454
   |texte=   A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20534454" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024